Abstract
BackgroundRosa mosqueta (RM) oil is characterized by high concentrations of antioxidants and α-linolenic acid (ALA; 18:3n–3). We have previously demonstrated in male C57BL/6J mice that RM decreases hepatic steatosis, a condition strongly associated with oxidative stress and inflammation. ObjectiveWe studied the molecular mechanisms that underlie the role of RM in preventing high-fat diet (HFD)–induced oxidative stress and inflammation. MethodsMale C57BL/6J mice aged 28 d and weighing 12–14 g were divided into the following groups and fed for 12 wk: control diet (CD; 10% fat, 20% protein, and 70% carbohydrates); CD + RM (1.94 mg ALA ⋅ g body weight–1 ⋅ d–1 administered by oral gavage); HFD (60% fat, 20% protein, and 20% carbohydrates); and HFD + RM. General parameters (body weight, visceral fat, and histology); glucose metabolism [homeostasis model assessment and blood glucose area under the curve (AUC)]; oxidative stress [hepatic nuclear factor (erythroid-derived 2)-like-2 (NRF2) and heme oxygenase 1 (HO-1) concentrations]; and inflammation [hepatic peroxisome proliferator-activated receptor α (PPAR-α) and acyl-coenzyme A oxidase 1 (ACOX1) concentrations, blood tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β) concentrations, and Tnfa and Il1b mRNA expression in liver and visceral adipose tissue] were evaluated. ResultsIn the HFD + RM mice, the final body weight (24.8 ± 1.1 g) was 19% lower than in the HFD mice (30.6 ± 2.8 g) (P < 0.05). Visceral fat was 34% lower in the HFD + RM mice than in the HFD mice (P < 0.05). The blood glucose AUC was 29% lower and Tnfa and Il1b expression levels were 47% and 59% lower, respectively, in the HFD + RM mice than in the HFD mice (P < 0.05). HFD + RM mice had 40% less hepatic steatosis (P < 0.05) and lower upregulation of PPAR-α (33%), ACOX1 (50%), NRF2 (39%), and HO-1 (68%) protein concentrations than did the HFD mice (P < 0.05). ConclusionsOur findings suggest that RM supplementation prevents the obese phenotype observed in HFD-fed mice by downregulating inflammatory cytokine expression and secretion and stimulating hepatic antioxidant and fatty acid oxidation markers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.