Abstract

Contamination of soil with toxic heavy metals is a major reason for retarded growth of crops and harmful effects on human health. Cultivation of large number of agricultural crops in contaminated soil is a major concern of environmentalist in the present times. Increased level of heavy metals can enter in to the food chain and may available for human consumption. Metal toxicity-induced oxidative stress eventually leads to refrained enzyme activities due to displacement of essential cofactors with other metal ions and blocking of functional groups such as carboxyl, histidyl and thiol, and proteins. Oxidative burst releases large quantities of reactive oxygen species (ROS) such as superoxide anion, hydrogen peroxide, hydroxyl radical, singlet oxygen, etc., which is one of the primary response of plants to heavy metal stress. Production of ROS is an inherent feature of plant cell and contributes to the process of oxidative damage leading to cell death. Its production is restricted to several cellular compartments such as mitochondria, chloroplast, and peroxisomes etc. ROS production leads to alteration of several physiological processes including degradation of enzymes, proteins, and amino acids and change in structure of cells. ROS are well described as secondary messengers in variety of cellular processes including acclimatization of cells to stress conditions. The signaling of ROS as a result of oxidative damage is regulated by several other signaling cascades which are interlinked. Their role has been studied under various stress conditions specifically heavy metals which leads to production of NO, H2O2, synthetic electrophilic compounds, lipid peroxidation molecules, etc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call