Abstract

The combination of chemotherapy and phototherapy gives rise to a boom in cancer therapy methodology. An all-in-one nanoplatform is of particular interest for increased safety and efficacy geared toward personalized precision medicine. However, low drug loading efficiency, random dispersion and distribution without visualization are widespread concerns. Here, a reactive oxygen species (ROS) responsive drug delivery system for imaging-guided chemo-phototherapy was developed. Polymeric micelles were designed and synthesized using PTX (drug) and Cypate (fluorescence and photosensitizer) as hydrophobic segments and PEG as hydrophilic ones encapsulating PTX. Furthermore, folic acid, as a targeting moiety, was conjugated to PEG for directed drug delivery. We evaluated the ROS-responsive drug release profiles and chemo-phototherapy application in an anticancer therapy. The results suggest these biocompatible amphiphilic polymer conjugates would be promising for applications in imaging-guided chemo-phototherapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.