Abstract

Here, a reactive oxygen species (ROS)-responsive targeted anticancer drug delivery system was developed by embedding a nitrophenyl tetramethyl-dioxaborolanyl benzyl carbamate (NBC)-modified deoxyribonuclease I (DNase I) in a DNase-degradable aptamer-based DNA nanogel. The DNA nanogel was formed by hybridization of three types of building blocks, namely, Y-shaped monomer 1 with three sticky ends, Y-shaped monomer 2 with two sticky ends and an aptamer end, and a DNA linker with two sticky ends. Single doxorubicin (DOX) or ribonuclease A (RNase A) as well as the combination of DOX and RNase A were effectively loaded into the nanogels, wherein DOX was embedded into DNA skeleton, while RNase A was encapsulated into nanogel matrix. The blocked enzymatic activity of DNase I due to NBC modification could be restored upon intracellular ROS-triggered NBC deprotection, resulting in self-degradation of the nanogels to release both DOX and RNase A. Consequently, the DOX and RNase A coloaded nanogels significantly inhibited the proliferation of MCF-7 cells through a synergistic effect. To sum up, this DNA-based drug delivery system with ROS-responsive self-degradation properties should be promising for application in targeted and synergistic cancer therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call