Abstract

Herein, we designed and synthesized novel reactive oxygen species (ROS)-responsive glycol chitosan-doxorubicin (DOX) prodrug via a ROS-cleavable thioketal (TK) linker. The obtained GC-TK-DOX formed self-assembled nanoparticles of 312 nm in aqueous media. Photosensitizers zinc phthalocyanine (ZnPc)-loaded GC-TK-DOX (GC-TK-DOX/ZnPc) nanoparticles were fabricated by using a dialysis approach. The GC-TK-DOX and GC-TK-DOX/ZnPc nanoparticles were nearly spherical by transmission electron microscopy (TEM) observation. Under 660-nm laser irradiation, GC-TK-DOX/ZnPc could generate singlet oxygen. Further, GC-TK-DOX/ZnPc nanoparticles exhibited ROS-sensitive release of DOX and ZnPc in vitro. GC-TK-DOX/ZnPc with laser irradiation showed more drug uptake and higher cytotoxic effects than GC-TK-DOX/ZnPc without irradiation, free DOX and GC-TK-DOX in HeLa tumor cells. Overall, these findings suggested that GC-TK-DOX/ZnPc could be a promising nanoarchitecture for synergetic chemo-photodynamic therapy against tumors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.