Abstract

Background and ObjectiveCancer cells accumulate high concentrations of reactive oxygen species as a result of their faster and uninhibited metabolic activity. Cancer chemotherapeutic agents release an excess of severe adverse reactions as a result of targeting normal cells. This demands an improvement in targeted drug-delivery systems to selectively discharge anticancer drugs in the vicinity of such highly metabolically and mitotically active cells.Materials and MethodsHere, magnetic nanoparticles were synthesized by a traditional co-precipitation technique. Fe3O4@OA-CS-5-FLU-NPs were synthesized by an easy and rapid in situ loading method. The proposed Fe3O4@OA-CS-5-FLU-NPs were productively prepared as well as characterized by various spectroscopic and microscopic studies.ResultsThe targeted drug release profile of the Fe3O4@OA-CS-5-FLU-NPs was studied in the presence of ROS including H2O2 and pH induction. The released product, Fe3O4@OA-CS-5-FLU-NP, exhibited desirable levels of cytotoxicity and demonstrated morphological changes and inhibition of colony formation for A549 and HeLa S3 cancer cells. The IC50 values at 24 hours were 12.9 and 23 μg/mL, respectively.ConclusionIn summary, results from the MTT assay, fluorescence staining as well as colony formation assays, revealed that the Fe3O4@OA-CS-5-FLU-NPs were active and safe for anticancer biomedical applications. In summary, the present investigation provides a powerful nanostructured based system for improved cancer theranostics that should be further studied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call