Abstract

AIM: The aim of the study described in the present paper was to assess several in vitro effects of TiO2 nanoparticles with different colloidal and photocatalytic properties on RAW 264.7 macrophages.METHODS: The cells were exposed to Degussa P25 titania and two other types of nanoparticles synthesized by a hydrothermal procedure in our laboratory: undoped and Fe3+-doped TiO2. Compared to Degussa P25, the hydrothermal nanomaterials were significantly less active in inducing cytotoxicity, production of intracellular reactive oxygen species (ROS) and release of pro-inflammatory cytokine interleukin-6 (IL-6). The induced effects were analysed with respect to nanoparticle size, surface charge, hydrophilicity, semiconductor bandgap energy and photocatalytic generation of ROS under non-cellular conditions.RESULTS: The overall results indicated that TiO2 nanoparticles with higher surface charge, hydrophilic surfaces and enhanced photocatalytic properties may preferentially induce macrophage cell damage and inflammation compared to other TiO2 nanomaterials.CONCLUSION: The present findings are relevant for studies regarding the evaluation of risks raised by self-cleaning technologies involving nanosized hydrophilic TiO2 photocatalysts as well as development of synthesis methods optimized for producing biocompatible TiO2 nanomaterials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call