Abstract

Phloxine B (PhB) is a most commonly used dye in cosmetic products throughout the world. It shows an absorption in visible and ultraviolet radiations. PhB was photodegraded within 4h of UV exposure. It generates reactive oxygen species (ROS) photochemically and intracellularly. Photosensitized PhB caused dose dependent cell viability reduction of human keratinocyte cell line (HaCaT) which was measured through MTT (75.4%) and NRU (77.3%) assays. It also induces cell cycle arrest and DNA damage. Photosensitized PhB induces Ca2+ release from endoplasmic reticulum (ER). It causes the upregulation of ER stress marker genes ATF6 (1.79 fold) and CHOP (1.93 fold) at transcription levels. The similar response of ATF6 (3.6 fold) and CHOP (2.38 fold) proteins was recorded at translation levels. CHOP targeted the mitochondria and reduced the mitochondrial membrane potential analyzed through JC-1 staining. It further increases Bax/Bcl2 ratio (3.58 fold) and promotes the release of cytochrome c, finally leads to caspase-dependent apoptosis. Upregulation of APAF1 (1.79 fold) in PhB treated cells under UV B exposure supports the mitochondrial-mediated apoptotic cell death. The results support the involvement of ER and mitochondria in ROS mediated PhB phototoxicity. Therefore, the use of PhB in cosmetic products may be deleterious to users during sunlight exposure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call