Abstract

Minimally invasive and highly precise cancer cell death is a goal, and nanoformulations that can respond to the unique TME hold promise. This article describes the development of a nanoparticles (NPs) for chemodynamic treatment (CDT) to combat the cancer. As a consequence, CuS NPs cores are used as Fenton-like catalysts, while Alginate (Alg) is used as a stabilizer and template for entrapping and stabilizing Cu NPs. Here, Alg coated CuS NPs (CuS@Alg NPs) was synthesized via a green and facile method. To promote biocompatibility, Alg is added to the system. The malignant cells are killed by generated toxic hydroxyl radicals (·OH) using CuS@Alg NPs as a Fenton-like process catalyst. The effectiveness of NPs was assessed by MTT assay, live/dead cells staining, and ROS generation within cancer cells. Results not only confirmed ROS generation ability of CuS@Alg NPs within cells, but also show the anticancer ability of them. By CDT, the created smart nanoscale system showed remarkable effectiveness for breast cancer suppression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.