Abstract

Hypoxic exposure causes pulmonary vasoconstriction, which serves as a critical physiologic process that ensures regional alveolar ventilation and pulmonary perfusion in the lungs, but may become an essential pathologic factor leading to pulmonary hypertension. Although the molecular mechanisms underlying hypoxic pulmonary vasoconstriction and associated pulmonary hypertension are uncertain, increasing evidence indicates that hypoxia can result in a significant increase in intracellular reactive oxygen species concentration ([ROS](i)) through the mitochondrial electron-transport chain in pulmonary artery smooth muscle cells (PASMCs). The increased mitochondrial ROS subsequently activate protein kinase C-epsilon (PKCepsilon) and NADPH oxidase (Nox), providing positive mechanisms that further increase [ROS](i). ROS may directly cause extracellular Ca(2+) influx by inhibiting voltage-dependent K(+) (K(V)) channels and opening of store-operated Ca(2+) (SOC) channels, as well as intracellular Ca(2+) release by activating ryanodine receptors (RyRs), leading to an increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) and associated contraction. In concert with ROS, PKCepsilon may also affect K(V) channels, SOC channels, and RyRs, contributing to hypoxic Ca(2+) and contractile responses in PASMCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call