Abstract

BackgroundThe G allele in retinoid-related orphan receptor alpha (RORA, rs8042149) gene is associated with post-traumatic stress disorder (PTSD) diagnosis and more severe symptoms, reported in the first genome-wide association study of PTSD and subsequent replication studies. Although recent MRI studies identified brain structural deficits in RORA rs8042149 risk G allele carriers, the neural mechanism underlying RORA–related brain structural changes in PTSD remains poorly understood. MethodsThis study included 227 Han Chinese adults who lost their only child. Cortical thickness and subcortical volume were extracted using FreeSurfer, and PTSD severity was assessed using the Clinician-Administered PTSD Scale. Hierarchical linear regression was used to assess the interaction effect between RORA genotypes (T/T, G/T, and G/G) and PTSD severity on cortical and subcortical structures. ResultsSignificant genotype × PTSD symptom severity interaction effects were found for bilateral transverse temporal gyrus thickness. For individuals with the homozygous T/T genotype, current PTSD symptom severity was positively associated with bilateral transverse temporal gyrus thickness. For individuals with heterozygous G/T genotype, current PTSD symptom severity was negatively associated with the left transverse temporal gyrus thickness. No significant main or interaction effects were found in any subcortical regions. LimitationCross-sectional design of this study. ConclusionThese findings suggest that the non-risk T/T genotype – but not the risk G allele carriers – has a potentially protective or compensatory role on temporal gyrus thickness in adults who lost their only child. These results highlight the moderation effect of RORA polymorphism on the relationship between PTSD symptom severity and cortical structural changes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call