Abstract

Physically separating daughter cells during cytokinesis requires contraction of an actin-myosin ring and vesicle-mediated membrane addition at the cleavage furrow. To identify vesicle trafficking proteins that function in cytokinesis, we screened deficiencies and mutations of candidate genes by live imaging the mitotic domains of the Drosophila embryo. In embryos homozygous for some of these deficiencies, we observed several cytokinesis phenotypes, including slow furrow ingression and increased membrane blebbing. We also found that cytokinesis required the Sec1/Munc18 homolog Rop, which interacts with syntaxin and mediates exocytosis at the plasma membrane. In a temperature-sensitive Rop mutant (Rop(TS)), the contractile ring disassembled during furrow ingression, indicating that maintenance of the ring required vesicle addition. Furthermore, in some dividing Rop(TS) cells, the shape of the daughter cells became unstable, causing cytokinesis failure. These results further highlight the importance of vesicle trafficking in animal cytokinesis and show that vesicle fusion influences cell shape during cytokinesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call