Abstract

Citrus rootstocks have well-known effects on tree size, crop load, fruit size, and various fruit quality factors. Fruit from trees budded on invigorating rootstocks are generally larger with lower soluble solids concentration (SSC) and titratable acidity compared to fruit from trees budded on less invigorating rootstocks. Although it is unclear how rootstocks exert their influence on juice quality of Citrus L. species, plant water relations are thought to play a central role. In addition, the larger fruit size associated with invigorating rootstocks and the inverse relationship between SSC and fruit size implies that fruit borne on trees on invigorating rootstocks have lower SSC due to dilution effects in larger fruit. To determine how rootstock type affects sugar accumulation in fruit of Citrus species, controlled water-deficit stress was applied to mature `Valencia' sweet orange [C. sinensis (L.) Osb.] trees on Carrizo citrange [C. sinensis × Poncirus trifoliata (L.) Raf.] or rough lemon (C. jambhiri Lush.) rootstocks. Withholding water from the root zone of citrus trees during stage II of fruit development decreased midday stem water potential and increased the concentrations of primary osmotica, fructose and glucose. Sucrose concentration was not affected, suggesting that sucrose hydrolysis took place. Increased concentrations of sugars and SSC in fruit from moderately water-stressed trees occurred independently of fruit size and juice content. Thus, passive dehydration of juice sacs, and concentration of soluble solids, was not the primary cause of differences in sugar accumulation. Controlled water-deficit stress caused active osmotic adjustment in fruit of `Valencia' sweet orange. However, when water-deficit stress was applied later in fruit development (e.g., stage III) there was no increase in sugars or SSC. The evidence presented supports the hypothesis that differential sugar accumulation of citrus fruit from trees on rootstocks of contrasting vigor and, hence, plant water relations, is caused by differences in tree water status and the enhancement of sucrose hydrolysis into component hexose sugars resulting in osmotic adjustment. Therefore, inherent rootstock differences affecting plant water relations are proposed as a primary cause of differences in sugar accumulation and SSC among citrus rootstocks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call