Abstract

BackgroundDesirable apple varieties are clonally propagated by grafting vegetative scions onto rootstocks. Rootstocks influence many phenotypic traits of the scion, including resistance to pathogens such as Erwinia amylovora, which causes fire blight, the most serious bacterial disease of apple. The purpose of the present study was to quantify rootstock-mediated differences in scion fire blight susceptibility and to identify transcripts in the scion whose expression levels correlated with this response.ResultsRootstock influence on scion fire blight resistance was quantified by inoculating three-year old, orchard-grown apple trees, consisting of 'Gala' scions grafted to a range of rootstocks, with E. amylovora. Disease severity was measured by the extent of shoot necrosis over time. 'Gala' scions grafted to G.30 or MM.111 rootstocks showed the lowest rates of necrosis, while 'Gala' on M.27 and B.9 showed the highest rates of necrosis. 'Gala' scions on M.7, S.4 or M.9F56 had intermediate necrosis rates. Using an apple DNA microarray representing 55,230 unique transcripts, gene expression patterns were compared in healthy, un-inoculated, greenhouse-grown 'Gala' scions on the same series of rootstocks. We identified 690 transcripts whose steady-state expression levels correlated with the degree of fire blight susceptibility of the scion/rootstock combinations. Transcripts known to be differentially expressed during E. amylovora infection were disproportionately represented among these transcripts. A second-generation apple microarray representing 26,000 transcripts was developed and was used to test these correlations in an orchard-grown population of trees segregating for fire blight resistance. Of the 690 transcripts originally identified using the first-generation array, 39 had expression levels that correlated with fire blight resistance in the breeding population.ConclusionsRootstocks had significant effects on the fire blight susceptibility of 'Gala' scions, and rootstock-regulated gene expression patterns could be correlated with differences in susceptibility. The results suggest a relationship between rootstock-regulated fire blight susceptibility and sorbitol dehydrogenase, phenylpropanoid metabolism, protein processing in the endoplasmic reticulum, and endocytosis, among others. This study illustrates the utility of our rootstock-regulated gene expression data sets for candidate trait-associated gene data mining.

Highlights

  • Desirable apple varieties are clonally propagated by grafting vegetative scions onto rootstocks

  • We developed and used a second-generation apple DNA NimbleGen expression microarray that was designed based on our first-generation NimbleGen array [18] and used it to analyze RNA samples isolated from the progeny of the ‘Ottawa 3’ × ‘Robusta 5’ cross grown in Geneva, NY

  • The results were reversed with E. amylovora strain HKN06P1, with ‘Gala’/M.7 susceptibility being similar to that of the most resistant trees and ‘Gala’/M.9F56 susceptibility being similar to that of the most susceptible trees

Read more

Summary

Introduction

Desirable apple varieties are clonally propagated by grafting vegetative scions onto rootstocks. Rootstocks influence many phenotypic traits of the scion, including resistance to pathogens such as Erwinia amylovora, which causes fire blight, the most serious bacterial disease of apple. The susceptibility of the different rootstocks and scion cultivars to fire blight varies substantially, and there are recommendations against certain combinations in regions prone to fire blight [5]. It has been observed in the field and in the greenhouse that a given cultivar can have different levels of disease resistance depending on the rootstock to which it is grafted [6,7]. In the current study we demonstrate that rootstocks can have a significant effect on the resistance of the scion to fire blight

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call