Abstract
The roots of second order polynomials with real coefficients are obtained in the S^{1+2} scator set. Explicit formulae are computed in terms of the polynomial coefficients. Although the scator product does not distribute over addition, the lack of distributivity is surmountable in order to find the zeros of the polynomial. The structure of the solutions and their distribution in 1+2 dimensional scator space are illustrated and discussed. There exist six, two, or eight solutions, depending on the value of polynomial coefficients. Four of these roots only exist in the hypercomplex S^{1+2}\S^{1+1} set.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.