Abstract
Over a composition algebra $A$, a polynomial $f(x) \in A[x]$ has a root $\alpha$ if and only $f(x)=g(x)\cdot (x-\alpha)$ for some $g(x) \in A[x]$. We examine whether this is true for general Cayley-Dickson algebras. The conclusion is that it is when $f(x)$ is linear or monic quadratic, but it is false in general. Similar questions about the connections between $f$ and its companion $C_f(x)=f(x)\cdot \overline{f(x)}$ are studied. Finally, we compute the left eigenvalues of $2\times 2$ octonion matrices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.