Abstract
This paper addresses the problem of rumor source detection with multiple observations, from a statistical point of view of a spreading over a network, based on the susceptible-infectious model. For tree networks, multiple independent observations can dramatically improve the detection probability. For the case of a single rumor source, we propose a unified inference framework based on the joint rumor centrality, and provide explicit detection performance for degree-regular tree networks. Surprisingly, even with merely two observations, the detection probability at least doubles that of a single observation, and further approaches one, i.e., reliable detection, with increasing degree. This indicates that a richer diversity enhances detectability. Furthermore, we consider the case of multiple connected sources and investigate the effect of diversity. For general graphs, a detection algorithm using a breadth-first search strategy is also proposed and evaluated. Besides rumor source detection, our results can be used in network forensics to combat recurring epidemic-like information spreading such as online anomaly and fraudulent email spams.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Journal of Selected Topics in Signal Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.