Abstract

Recent work in perturbative quantum field theory has led to much study of the Connes-Kreimer Hopf algebra. Its (graded) dual, the Grossman-Larson Hopf algebra of rooted trees, had already been studied by algebraists. L. Foissy introduced a noncommutative version of the Connes-Kreimer Hopf algebra, which turns out to be self-dual. Using some homomorphisms defined by the author and W. Zhao, we describe a commutative diagram that relates the aforementioned Hopf algebras to each other and to the Hopf algebras of symmetric functions, noncommutative symmetric functions, and quasi-symmetric functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.