Abstract

We present a new approach in the study of rooted maps without regard to genus. We prove the existence of a new type of equation for the generating series of these maps enumerated with respect to edges and vertices. This is Riccati's equation. It seems to be the first time that such a differential equation appears in the enumeration of rooted maps. Solving this equation leads to different closed forms of the studied generating series. The most interesting consequence is a development of this generating function in a very nice continued fraction leading to a new equation generalizing the well-known Dyck equation for rooted planar trees. In a second part, we also obtain a differential equation for the generating series of rooted trees regardless of the genus, with respect to edges. This also leads to a continued fraction for the generating series of rooted genus independent trees and to an unexpected relation between both previous generating series of trees and rooted maps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.