Abstract

Near-isogenic hybrids (NIHs), developed from crossing maize (Zea mays L.) backcross-derived lines (BDLs) differing for the parental alleles at a major QTL for leaf ABA concentration (L-ABA), were field-tested for 2 years under well-watered and water-stressed conditions. Differences among NIHs for L-ABA and other morpho-physiological traits were not affected by water regimes. On average, the QTL allele for high L-ABA markedly reduced stomatal conductance and root lodging. To elucidate the effects of the QTL on root architecture and L-ABA, root traits of two pairs of BDLs were measured in plants grown in soil columns at three water regimes. Differences among BDLs were not affected by water regimes. Across water regimes, the QTL confirmed its effect on L-ABA and showed a concurrent effect on root angle, branching, number, diameter, and dry weight. Based on these results, it is concluded that the QTL affects root lodging through a constitutive effect on root architecture. In addition, there is speculation that the QTL effects on root traits and L-ABA are probably due to pleiotropy rather than linkage and a model is proposed in which the QTL has a direct effect on root architecture, while indirectly affecting L-ABA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.