Abstract

In the Oman ophiolite crustal section, a contact zone between the gabbro unit and the volcanics and diabase sheeted dikes, called the root zone of the sheeted dike complex, has been recently mapped at a fine scale in a selected area. The Oman ophiolite is derived from a fast spreading ridge which had a melt lens located between the main gabbro unit and the root zone of the sheeted dike complex. With a few exceptions accounted for, this horizon has a fairly constant thickness, ∼100 m, and a crude internal pseudo‐stratigraphy. At the base of the root zone are isotropic ophitic gabbros interpreted as a thermal boundary layer. This layer is transitional between the magmatic system of the melt lens, convecting at 1200°C, and a high‐temperature (<1100°C) hydrothermal system, convecting within the root zone. Above this level, the isotropic gabbros have been, locally, largely molten due to an influx of seawater, at ∼1100°C, thus generating varitextured ophitic and pegmatitic gabbros. These latter gabbros constitute the upper part of the root zone and are associated with trondjhemitic intrusions as screens in the lower sheeted dikes. Diorites and trondjhemites were also generated by hydrous melting, at temperatures below 1000°C. The whole root zone is a domain of very sharp average thermal gradient (∼7°C/m). At the top of the root zone, a new thermal boundary layer, with diabase dikes hydrated in amphibolite facies conditions, separates the preceding high‐temperature convective system from the well‐known greenschist facies (<450°C) hydrothermal system operating throughout the sheeted dike complex, up to the seafloor. The isotropic gabbros near the base of the root zone are intruded by protodikes with distinctive microgranular margins and an ophitic center. Protodike swarms are exceptional because, intruding a medium at ∼1100°C, they are largely destroyed by dike‐in‐dike intrusions and by hydrous melting. However, they demonstrate that this zone was generated by melt conduits issued from the underlying melt lens. Each dike of the sheeted dike complex is thus fed by one protodike. As this zone has been recently drilled by IODP in the eastern Pacific Ocean, a brief comparison is proposed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.