Abstract

Effects of root zone temperature on growth, shoot water relations, and root water flow were studied in 1-year-old aspen (Populus tremuloides Michx.) seedlings. Seedlings were grown in solution culture and exposed to day/night air temperatures of 22/16 degrees C and solution culture temperatures of 5, 10, or 20 degrees C for 28 days after bud flush. Compared with root growth at 20 degrees C, root growth was completely inhibited at 5 degrees C and inhibited by 97% at 10 degrees C. The 5 and 10 degrees C treatments severely reduced shoot growth, leaf size, and total leaf area. Root water flow was inhibited by the 5 and 10 degrees C treatments. However, when seedlings were grown for 28 days at 5 degrees C and root water flow was measured at 20 degrees C, there was an increase in flow rate. This increase in root water flow was similar in magnitude to the decrease in root water flow observed when seedlings were grown for 28 days at 20 degrees C and root water flow was measured at 5 degrees C. Reduced root water flow of seedlings grown at 5 and 10 degrees C resulted in decreased stomatal conductance, net assimilation, and shoot water potentials. Root water flow was positively correlated with leaf size, total leaf area, shoot length, and new root growth. Transferring seedlings from 5 to 20 degrees C for 24 h significantly increased root water flow, shoot water potential, and net photosynthesis, whereas transferring seedlings from 10 to 20 degrees C resulted in only a slightly increased shoot water potential. Transferring seedlings from 20 to 5 degrees C greatly reduced root water flow, stomatal conductance, and net photosynthesis, whereas shoot water potential decreased only slightly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.