Abstract
Plants have evolved signaling mechanisms that guide growth away from adverse environments that can cause yield losses. Root halotropism is a sodium-specific negative tropism that is crucial for surviving and thriving under high salinity. Although root halotropism was discovered some years ago, the underlying molecular and cellular mechanisms remain unknown. Here, we show that abscisic acid (ABA)-mediated root twisting determines halotropism in Arabidopsis. An ABA-activated SnRK2 protein kinase (SnRK2.6) phosphorylates the microtubule-associated protein SP2L at Ser406, which induces a change in the anisotropic cell expansion at the root transition zone and is required for root twisting during halotropism. Salt stress triggers SP2L-mediated cortical microtubule reorientation, which guides cellulose microfibril patterns. Our findings thus outline the molecular mechanism of root halotropism and indicate that anisotropic cell expansion through microtubule reorientation and microfibril deposition has a central role in mediating tropic responses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.