Abstract

We revisit Kellerer's Theorem, that is, we show that for a family of real probability distributions $(\mu_t)_{t\in [0,1]}$ which increases in convex order there exists a Markov martingale $(S_t)_{t\in[0,1]}$ s.t.\ $S_t\sim \mu_t$. To establish the result, we observe that the set of martingale measures with given marginals carries a natural compact Polish topology. Based on a particular property of the martingale coupling associated to Root's embedding this allows for a relatively concise proof of Kellerer's theorem. We emphasize that many of our arguments are borrowed from Kellerer \cite{Ke72}, Lowther \cite{Lo07}, and Hirsch-Roynette-Profeta-Yor \cite{HiPr11,HiRo12}.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.