Abstract
This paper is concerned with two things. The first is a (primarily) geometric axiomatic description for the systems of real roots of Lie algebras arising from (generalized) Cartan matrices. The description is base free and is a natural extension of the well-known axiomatic description of finite root systems. The primary component of our description is an open convex cone which, following Looijenga [3], we call the Tits cone. In fact it was Looijenga's paper that led to this axiomatic formulation. Unlike his construction, the dimension of the Tits cone is not tightly connected to the dimension of the Cartan matrix which it eventually yields. This leads us to the second part of the paper which concerns the construction of Cartan matrices of low row rank. We can show that if we have an l × l Cartan matrix of row rank n, then we can model an axiomatic description of it with a cone of dimension n + 1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.