Abstract
Abstract Root proliferation is important in determining root foraging capability of rangeland grasses to unpredictable soil-nutrient pulses. However, root proliferation responses are often confounded by the inherent relative growth rate (RGR) of the particular species being compared. Additionally, inherent biomass allocation to roots (R:S ratio) can be associated with root RGR, hence likely influencing root foraging responses. The influence of relative growth rate and biomass allocation patterns on the speed and efficiency of root foraging responses at the critical seeding stage was examined in two important perennial rangeland grasses that occur widely in the Great Basin Region of the United States (Whitmar bluebunch wheatgrass [ Pseudoroegneria spicata {Pursh} Love] and Hycrest crested wheatgrass [ Agropyron desertorum {Fisch. ex Link} Schult. × A. cristatum L. Gaert.]) as well as in the widespread exotic invasive annual grass, cheatgrass ( Bromus tectorum L.). Greenhouse-grown seedlings were exposed to four nutrient regimes: uniform–low, uniform–high, soil-nutrient pulse, soil-nutrient depletion, and to either no clipping or clipping (80% removal of standing shoot biomass). Hycrest was the only species that exhibited root proliferation responses to the short-lived nutrient pulse, and this response occurred through root elongation rather than initiation of lateral root branches. Overall, defoliation inhibited proliferation-based root responses to a larger extent than topological-based root responses. Defoliated plants of Hycrest interrupted root development (topological index did not change) following shoot defoliation compared to undefoliated plants. In contrast, root topological developmental patterns were the same for defoliated and undefoliated plants of Whitmar, whereas cheatgrass exhibited an intermediate response between Whitmar and Hycrest. Our results suggest that inherent biomass allocation to roots contributes to enhanced capabilities of proliferation-based root responses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.