Abstract

We examined the root production of a set of Fagus crenata (Siebold’s beech) saplings grown in an infertile immature volcanic ash soil (VA) and another set in a fertile brown forest soil (BF) with both sets exposed to elevated CO2. After the saplings had been exposed to ambient (370–390 μmol mol−1) or elevated (500 μmol mol−1) CO2, during the daytime, for 11 growing seasons, the root systems were excavated. Elevated CO2 boosted the total root production of saplings grown in VA and abolished the negative effect of VA under ambient CO2, but there was no significant effect of elevated CO2 on saplings grown in BF. These results indicate the projected elevated CO2 concentrations may have a different impact in regions with different soil fertility while in regions with VA, a higher net primary production is expected. In addition, we observed large elevated CO2-induced fine-root production and extensive foraging strategy of saplings in both soils, a phenomenon that may partly (a) adjust the biogeochemical cycles of ecosystems, (b) form their response to global change, and (c) increase the size and/or biodiversity of soil fauna. We recommend that future researches consider testing a soil with a higher degree of infertility than the one we tested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.