Abstract

Roots with ideal characteristics are important for sustaining crop yields, particularly when plants are grown in soils with inadequate water and nutrients [1-4]. Understanding the development of roots and their interaction with the soil environment is vital to manipulate the root traits, and ultimately, the food security [5]. For instance, rice has a significant level of genetic variation in root traits [6-9], that can be harnessed for improving its adaptation to abiotic stresses. However, genetic improvement of root systems through phenotypic selection at the breeding level is impractical due to complexity in phenotyping root traits [3,10,11].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.