Abstract

Soil-borne pathogens structure plant communities, shaping their diversity, and through these effects may mediate plant responses to climate change and disturbance. Little is known, however, about the environmental determinants of plant pathogen communities. Therefore, we explored the impact of climate gradients and anthropogenic disturbance on root-associated pathogens in grasslands. We examined the community structure of two pathogenic groups—fungal pathogens and oomycetes—in undisturbed and anthropogenically disturbed grasslands across a natural precipitation and temperature gradient in the Midwestern USA. In undisturbed grasslands, precipitation and temperature gradients were important predictors of pathogen community richness and composition. Oomycete richness increased with precipitation, while fungal pathogen richness depended on an interaction of precipitation and temperature, with precipitation increasing richness most with higher temperatures. Disturbance altered plant pathogen composition and precipitation and temperature had a reduced effect on pathogen richness and composition in disturbed grasslands. Because pathogens can mediate plant community diversity and structure, the sensitivity of pathogens to disturbance and climate suggests that degradation of the pathogen community may mediate loss, or limit restoration of, native plant diversity in disturbed grasslands, and may modify plant community response to climate change.

Highlights

  • Experimental and theoretical evidence show that plant pathogens play an important role in structuring plant

  • Because remnant grasslands had greater turnover across the East–West precipitation gradient, we reran DESeq2 analysis within Western sites only and within Eastern sites only to determine variation between disturbed and remnant grasslands in these two specific regions. In both groups of root-associated plant pathogens studied here—fungal pathogens and oomycetes—richness and community composition responded to environmental variables, in remnant, undisturbed grasslands, but showed a reduced sensitivity to environmental variation in disturbed grasslands

  • We found a significant temperature by precipitation interaction in fungal pathogens in both remnant and disturbed sites (Table 2b, remnant: p = 0.04, R2 = 0.049; disturbed: p = 0.03, R2 = 0.099)

Read more

Summary

Methods

Samples were collected from paired remnant and disturbed grassland sites across the Midwestern United States (Fig. 1), from Illinois to Oklahoma. Remnant grassland sites were defined by the absence of tilling or intensive grazing and were dominated by late successional native tallgrass prairie plant species, including Andropogon gerardii, Schizachyrium scoparium, Sorghastrum nutans, Amorpha canescens, Echinachea pallida, and Silphium lacinatum. Remnant grasslands were generally more diverse than disturbed grasslands (x = 18.8 versus 7.5 plant species per plot, respectively). We sampled four plots arbitrarily located within each site. Four soil cores (width 2 cm, depth 15 cm) were collected arbitrarily within each of the four quadrants of each 1 m2 plot and composited into one sample for sequence analysis. Climate variables including mean annual temperature and mean annual precipitation were extracted from National Weather locations closest to each site [30].

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call