Abstract
AbstractThe parity conjecture has a long and distinguished history. It gives a way of predicting the existence of points of infinite order on elliptic curves without having to construct them, and is responsible for a wide range of unexplained arithmetic phenomena. It is one of the main consequences of the Birch and Swinnerton‐Dyer conjecture and lets one calculate the parity of the rank of an elliptic curve using root numbers. In this handbook, we explain how to use local root numbers of elliptic curves to realise some of these phenomena, with an emphasis on explicit calculations. The text is aimed at a ‘user’ and, as such, we will not be concerned with the proofs of known cases of the parity conjecture, but instead, we will demonstrate the use of the theory by means of examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.