Abstract

There is a knowledge gap in the effects of climate warming and nitrogen (N) deposition on root N absorption capacity, which limits our ability to predict how climate change alters the N cycling and its consequences for forest productivity especially in subtropical areas where soil N availability is already high. In order to explore the effects and mechanism of warming and the N deposition on root N absorption capacity of Chinese fir (Cunninghamia lanceolata), a subtropical arbuscular mycorrhizal conifer, the fine root 15NH4+ and 15NO3- uptake kinetics at a reference temperature of 20 °C were measured across different seasons in a factorial soil warming (ambient, +5 °C)×N addition (ambient, +40kgNha-1yr-1) experiment. The results showed that (i) compared with the control, warming increased the maximal uptake rate of NH4+ (Vmax,20 °C-NH4+) in summer, while N addition enhanced it in spring and summer; compared with non-warming treatments, warming treatments increased the uptake rate of NO3- at a reference concentration of 100μmol (V100,20 °C-NO3-) in spring. (ii) The analysis of covariance showed that Vmax,20 °C-NH4+ was positively correlated with root mycorrhizal colonization rate (MCR) and V100,20 °C-NO3- was positively correlated with specific root respiration rate (SRR), whereas no N uptake kinetic parameter was correlated with specific root length, root N and non-structural carbon concentrations. Thus, our results demonstrate that warming-increased root NH4+ uptake might be related to warming-increased MCR, whereas warming-increased root NO3- uptake might be related to warming-increased SRR. We conclude that root NH4+ and NO3- uptake capacity of subtropical Chinese fir can be elevated under warming and N deposition, which could improve plantation productivity and mitigate N leaching loss and soil acidification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.