Abstract
Cadmium (Cd) is a toxic heavy metal that can accumulate in crop plants. We reported previously the engineering of a low cadmium-accumulating line (2B) of rice through overexpression of a truncated OsO3L2 gene. As expression of this transgene was highest in plant roots, amplicon and metatranscriptome sequencing were used to investigate the possibility that its expression affects root associated microbes. Based on amplicon sequencing of bacterial 16S rRNA, but less so from fungal ITS, the OTUs (operational taxonomic units) showed less diversity in soil tightly (rhizoplane) than loosely (rhizosphere) associated with plant roots. Significantly changed OTUs caused by the low-Cd accumulating plant 2B, Cd treatment or both were found, and 10 of the 13 OTUs (77%) that were enriched in Cd treated 2B samples over the wild type counterpart have been previously described as involved in tolerance to Cd or other heavy metals. Metatranscriptome sequencing of rhizosphere microbiome found that bacteria accounted for 70–75% of the microbial RNA. Photosynthesis-antenna proteins and nitrogen metabolism pathways were most active in soil microbes treated with Cd and grown with plant 2B. Correspondingly, the relative abundance of Cyanobacteria was enriched to < 1% of Cd treated rhizosphere bacteria, yet accounted for up to 13% of Cd treated 2B rhizospheric transcripts. These enriched microbes by transgene and Cd are worthy candidates for future application on reducing crop uptake of Cd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.