Abstract

Basal stem rot of oil palms (OPs) is caused by Ganoderma boninense, a white-rot fungus. Root tissues are the primary route for G. boninense penetration and subsequent pathogenesis on OPs. Little is known on the host lignin biochemistry and selectivity for G. boninense degradation. Oil palm genotypes with different defense responses to G. boninense (highly tolerant, intermediately tolerant, and susceptible) were assessed for root lignin biochemistry (lignin content and composition), plant functional traits (height, fresh weight, girth), chlorophyll content, and root elemental nutrient content. One-year-old seedlings and five-year-old trees were screened for root thioglycolic acid lignin (TGA) content, lignin composition, and elemental nutrient depositions, while plant functional traits were evaluated in the one-year-old seedlings only. The TGA lignin in all the oil palm seedlings and trees ranged from 6.37 to 23.72 pM µg−1, whereas the nitrobenzene oxidation products showed a syringyl (S)-to-guaiacyl (G) ratios of 0.18–0.48. Tolerant genotypes showed significantly lower lignin content compared to the intermediately tolerant and susceptible genotypes. Likewise, the S/G ratio was higher in genotypes with lower lignin content. The depositions of root Fe, Si, Ti, S, and Cu were significantly different among the oil palm genotypes with the susceptible genotypes showing greater content than the tolerant genotypes.

Highlights

  • Oil palm (Elaeis guineensis Jacq.), the world’s most efficient oil-bearing tree [1], is highly valued for its vegetable oil [2]

  • To furtherThe confirm the description of each cross, a basal stem rot disease trial conducted inprogeny a defense responses of all genotypes used in this study were based onwas a multi-location glasshouse condition

  • Of the infected oil trial conducted by Applied Agricultural Resources Sdn Bhd. and Malaysian Palm Oil Board

Read more

Summary

Introduction

Oil palm (Elaeis guineensis Jacq.), the world’s most efficient oil-bearing tree [1], is highly valued for its vegetable oil [2]. Palm oil input (3−4 tonnes of oil per hectare per year) to output ratio exceeds 10 times greater than other major oil-seed crops such as soybean, rapeseed, and sunflower. In 2019/2020, palm oil yield accounted for 30% of global vegetable oil production. After soybean and cottonseed oils, palm oil scored the highest production with about 72.27 million metric tonnes of oil generated from about 5.5% of the total agricultural land [3]. World demand for vegetable oil is estimated to reach 240 million tonnes by 2050 [4] and for this reason, oilseed crops, oil palm, are constantly subjected to yield improvements [5,6].

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call