Abstract
Root-knot nematodes (RKNs; Meloidogyne spp.) induce new post-embryogenic organs within the roots (galls) where they stablish and differentiate nematode feeding cells, giant cells (GCs). The developmental programmes and functional genes involved remain poorly defined. Arabidopsis root apical meristem (RAM), lateral root (LR) and callus marker lines, SHORT-ROOT/SHR, SCARECROW/SCR, SCHIZORIZA/SCZ, WUSCHEL-RELATED-HOMEOBOX-5/WOX5, AUXIN-RESPONSIVE-FACTOR-5/ARF5, ARABIDOPSIS-HISTIDINE PHOSPHOTRANSFER-PROTEIN-6/AHP6, GATA-TRANSCRIPTION FACTOR-23/GATA23 and S-PHASE-KINASE-ASSOCIATED-PROTEIN2B/SKP2B, were analysed for nematode-dependent expression. Their corresponding loss-of-function lines, including those for LR upstream regulators, SOLITARY ROOT/SLR/IAA14, BONDELOS/BDL/IAA12 and INDOLE-3-ACETIC-ACID-INDUCIBLE-28/IAA28, were tested for RKN resistance/tolerance. LR genes, for example ARF5 (key factor for root stem-cell niche regeneration), GATA23 (which specifies pluripotent founder cells) and AHP6 (cytokinin-signalling-inhibitor regulating pericycle cell-divisions orientation), show a crucial function during gall formation. RKNs do not compromise the number of founder cells or LR primordia but locally induce gall formation possibly by tuning the auxin/cytokinin balance in which AHP6 might be necessary. Key RAM marker genes were induced and functional in galls. Therefore, the activation of plant developmental programmes promoting transient-pluripotency/stemness leads to the generation of quiescent-centre and meristematic-like cell identities within the vascular cylinder of galls. Nematodes enlist developmental pathways of new organogenesis and/or root regeneration in the vascular cells of galls. This should determine meristematic cell identities with sufficient transient pluripotency for gall organogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.