Abstract

The symbiosis responsible for nitrogen fixation in legume root nodules is initiated by rhizobial signaling molecules [Nod factors (NF)]. Using transgenically tagged microtubules and actin, we dynamically profiled the spatiotemporal changes in the cytoskeleton of living Lotus japonicus root hairs, which precede root-hair deformation and reflect one of the earliest host responses to NF. Remarkably, plant-parasitic root-knot nematodes (RKN) invoke a cytoskeletal response identical to that seen in response to NF and induce root-hair waviness and branching in legume root hairs via a signal able to function at a distance. Azide-killed nematodes do not produce this signal. A similar response to RKN was seen in tomato. Aspects of the host responses to RKN were altered or abolished by mutations in the NF receptor genes nfr1, nfr5, and symRK, suggesting that RKN produce a molecule with functional equivalence to NF, which we name NemF. Because the ability of RKN to establish feeding sites and reproduce was markedly reduced in the mutant lines, we propose that RKN have adapted at least part of the symbiont-response pathway to enhance their parasitic ability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.