Abstract
Mechanistic hypotheses to explain mycorrhizal enhancement of root hydraulic conductivity (Lp ) suggest that phosphorus (P) nutrition, plant growth substances and/or altered morphology may be responsible. Such ideas are based on work with VA (vesicular-arbuscular) mycorrhizas. Since VA mycorrhizas and ectomycorrhizas differ in many respects, they may alter host plant water uptake via different mechanisms. This paper examines LT in various ectomycorrhizal associations while considering factors which are important to the VA mycorrhizal effect on Lp . Douglas fir Pseudotsuga menziesii (Mirb.) Franco] seedlings inoculated with the ectomycorrhizal fungi Laccaria bicolor (Maire) Orton and Hebeloma crustuliniforme (Bull, ex St. Amans) Quel. and non-inoculated seedlings infected naturally with Thelephora were grown under three low levels of P fertilization (1, 10 and 100 fim P). Seedling morphology, tissue P levels, Lp and plant growth substance levels in xylem sap were measured after nine months growth. Increased tissue P and decreased root/shoot ratio correlated with increased Lp in each of the mycorrhizal treatments. When adjusted for the effect of these two factors, Lp of Laccaria and Hebeloma seedlings was still lower than the Thelephora seedlings. In a subsequent experiment, the Lp of seedlings with Hebeloma and Rhizopogon vinicolor Smith mycorrhizas was compared to the Lp of non-mycorrhizal seedlings (grown at 100 mM P) and no differences were found among treatments. The lack of an ectomycorrhizal effect on Lp is quite different from the enhancement of host Lp by VA mycorrhizas. Zeatin riboside concentrations of Thelephora- and Hebeloma-iniected seedlings were similar, yet higher than with Laccaria. There was no relationship between plant growth substances and Lp in ectomycorrhizal Douglas fir, despite lower zeatin riboside concentrations for Laccaria-inoculated plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.