Abstract

Summary Spatial heterogeneity affects plant performance and is influenced by plants, but the scale at which fine roots react to or generate spatial heterogeneity has received little attention. Fine roots might be expected to respond to heterogeneity at a scale comparable to their diameter (mm), but studies to date have been conducted at much coarser resolutions (cm – m). Here we quantify root heterogeneity in contrasting habitats with special attention to the influence of resolution. We measured fine root length heterogeneity at resolutions ranging from 1 to 300 mm2, at four elevations along an arctic alpine gradient from 500 m a.s.l. (forest) to 1100 m (tundra). We calculated the magnitude of heterogeneity as the coefficient of variation of root length, and the scale of heterogeneity using semivariance analysis. The magnitude of heterogeneity was about twofold greater at fine than coarse resolution. Further, the magnitude of heterogeneity was generally greatest at the highest elevation, suggesting that soil at 1100 m was less evenly occupied by plant roots than soils at lower elevations. The exception to this was at the 1 mm2 resolution, for which the magnitude of heterogeneity did not vary with elevation, possibly because heterogeneity at this scale is related to ecophysiological processes common to all vegetation types. The scale of root length heterogeneity increased significantly with resolution coarseness, suggesting that roots respond to or generate patchiness at small scales that have not previously been examined. In contrast, the scale of heterogeneity did not vary significantly with elevation and the accompanying turnover in growth form. Our results suggest that roots in four vegetation types respond to or generate very fine scales of spatial heterogeneity, including scales much smaller than those that have previously been examined. Both the magnitude and scale of heterogeneity varied with sampling resolution, suggesting resolutions as small as a few millimetres are relevant to studies of spatial root interactions and below‐ground processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.