Abstract

First year seedlings of English oak (Quercus Cobur) and silver birch (Betula pendula) were subjected to pressure-volume analysis to investigate the water potential components and cell wall properties of single leaves. It was hoped that this rapid-drying technique would differentiate between reductions in plant solute potential resulting from dehydration and the effects of solute accumulation.Comparison of results from these experiments with those of slow drying treatments (over a number of days) with plants growing in tubes of soil, indicated that some solute accumulation may have occurred in drying oak leaves. High leaf turgor and leaf conductance were maintained for a significant period of the drying cycle. Roots of well-watered oak plants extended deep into the soil profile, and possibly as a result of solute regulation and therefore turgor maintenance, root growth of unwatered plants was greater than that of their well-watered counterparts. This was particularly the case deep in the profile. As a result of deep root penetration, water deep in the soil core was used by oak plants to maintain plant turgor, and quite low soil water potentials were recorded in the lower soil segments.Root growth of well-watered birch seedlings was prolific but roots of both well-watered and unwatered plants were restricted to the upper part of the profile. Root growth of unwatered plants was reduced despite the existence of high soil water potentials deep in the profile. Shallow rooting birch seedlings were unable to use this water.Pressure-volume analysis indicated that significant reductions of water potential, which are required for water uptake from drying soil, would occur in oak with only a small reduction in plant water content compared to the situation in birch. This was a result of the low solute potential in oak leaves combined with a high modulus of elasticity of cell walls. Deep rooting of oak seedlings, combined with these characteristics, which will be particularly important when soil deep in the profile begins to dry, mean that this species may be comparatively successful when growing on dry sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.