Abstract
Plants use their roots to forage for nutrients in heterogeneous soil environments, but different plant species vastly differ in the intensity of foraging they perform. This diversity suggests the existence of constraints on foraging at the species level. We therefore examined the relationships between the intensity of root foraging and plant body traits across species in order to estimate the degree of coordination between plant body traits and root foraging as a form of plant behavior. We cultivated 37 perennial herbaceous Central European species from open terrestrial habitats in pots with three different spatial gradients of nutrient availability (steep, shallow, and no gradient). We assessed the intensity of foraging as differences in root placement inside pots with and without a spatial gradient of resource supply. For the same set of species, we retrieved data about body traits from available databases: maximum height at maturity, mean area of leaf, specific leaf area, shoot lifespan, ability to self-propagate clonally, maximal lateral spread (in clonal plants only), realized vegetative growth in cultivation, and realized seed regeneration in cultivation. Clonal plants and plants with extensive vegetative growth showed considerably weaker foraging than their non-clonal or slow-growing counterparts. There was no phylogenetic signal in the amount of expressed root foraging intensity. Since clonal plants foraged less than non-clonals and foraging intensity did not seem to be correlated with species phylogeny, we hypothesize that clonal growth itself (i.e., the ability to develop at least partly self-sustaining ramets) may be an answer to soil heterogeneity. Whereas unitary plants use roots as organs specialized for both resource acquisition and transport to overcome spatial heterogeneity in resource supply, clonal plants separate these two functions. Becoming a clonal plant allows higher specialization at the organ level, since a typical clonal plant can be viewed as a network of self-sustainable harvesting units connected together with specialized high-throughput connection organs. This may be an effective alternative for coping with spatial heterogeneity in resource availability.
Highlights
Soil is the source of various essential resources with contrasting repletion and depletion dynamics and spatial patterns (Craine and Dybzinski, 2013)
We showed that root foraging is apparent and that plant species strongly differ in their root foraging ability – this is in accord with previous studies
We show that root foraging is much less pronounced in plant species capable of vigorous vegetative growth and reproduction, that is, clonal plants
Summary
Soil is the source of various essential resources with contrasting repletion and depletion dynamics and spatial patterns (Craine and Dybzinski, 2013). Phenotypic plasticity in root growth, architecture, and spatial placement may be an answer to the soil heterogeneity and low predictability (Bradshaw, 1965). Ample evidence of a plastic response in root growth and placement has been obtained from experimental systems illustrating root searching patterns in response to gradients of water and nutrients (Drew, 1975; Hodge et al, 1999). Roots are the plant organ for which foraging for resources has been most convincingly demonstrated (Hutchings and de Kroon, 1994). We see two possible sources of such constraint: (i) differences in growth rate and resulting overall root system size, and (ii) differences in the processes that determine the size-independent component of root system shape
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.