Abstract

Cd(II) adsorption of root exudates from sunflower (Helianthus annuus L.) seedling was investigated by Cd ion-selective electrode, Fourier Transform Infrared spectroscopy, and fluorescence spectroscopy. Root exudates from Helianthus annuus L. had strong adsorption ability toward Cd(II). The adsorption process was pH-dependent and the maximum adsorption capacity, 150.8 mg g−1, was observed at pH 7.0. Root exudates had pK a1 at 4.7 for carboxyl and pK a2 at 9.2 for phenolic, and amino groups. The aliphatic and aromatic (C−H) groups, amide III group, and the C (=O)−O and sulfonate groups were responsible for Cd(II) adsorption. The excitation emission matrix fluorescence spectroscopy showed protein-like substances participated in Cd adsorption and formed strong complexes, with conditional stability constants of 4.70 and 4.32, which is a little lower than that determined by potentiometric methods, 5.13. The strong Cd complexing ability of root exudates implies that root exudates may significantly affect mobility, toxicity, and phytoavailability of Cd. Cd binding of root exudates may be attributed to its interaction with the proteins, polysaccharides, and phenolic compounds in root exudates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.