Abstract
The present study aimed at analysing the proteome pattern of the leaf blade of barley (Hordeum vulgare L.) in Serendipita indica-colonised plants to decipher the molecular mechanism of S. indica-mediated salt stress. This work is aligned with our previous research on barley leaf sheath to study proteomic pattern variability in leaf blade and sheath of barley plant in response to salinity and S. indica inoculation. The experiment was conducted using a completely randomised factorial design with four replications and two treatments: salinity (0 and 300mmoll-1 NaCl) and fungus (noninoculated and S. indica-inoculated). The leaf blades of the salt-treated S. indica-colonised and noninoculated plants were harvested after 2weeks of salt treatment for the physiological and proteomic analyses. After exposure to 300mmoll-1 NaCl, shoot dry matter production in noninoculated control plants decreased 84% which was about twofold higher than inoculated plants with S. indica. However, the accumulation of sodium in the shoot of S. indica-inoculated plants was significantly lower than the control plants. Analysis of the proteome profile revealed a high number of significantly up-regulated proteins involved in photosynthesis (26 out of 42 identified proteins). The results demonstrated how the enhanced plant growth and salt stress resistance induced by S. indica was positively associated with the up-regulation of several proteins involved in photosynthesis and carbohydrate metabolism. In fact, S. indica improved photosynthesis in order to reach the best possible performance of the host plant under salt stress. Current research provides new insight into the mechanism applied by S. indica in reducing the negative impacts of salt stress in barley at physiological and molecular levels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.