Abstract

Root depth of pasture is an important hydrological parameter that has substantial implications for the use of rainfall by plants and in estimating deep drainage using biophysical modelling. Studies were undertaken for native and sown perennial grass-based pastures on the North-West Slopes of New South Wales to investigate 4 approaches that may identify the depth of plant roots based on objective assessments of change in soil water content (SWC). The 4 approaches were to examine traces of SWC measured with a neutron moisture meter (NMM) at about 4-week intervals (0–210 cm profile at 20-cm increments) for defined periods with root depth interpreted as, (i) the maximum depth at which there was a distinct decrease in SWC, (ii) the maximum depth at which there was a >0.01 m3/m3 decrease in SWC, (iii) the uppermost depth at which the change in SWC was significant using t0.05, and (iv) the uppermost depth at which the daily rate of change in SWC was significant using t0.05. For each of these approaches, 4 preliminary criteria were applied as filters to the SWC data before they were used in these analyses, (i) the depth of NMM tubes and maximum depth of measurement of SWC was greater than the anticipated pasture root depth, (ii) the depth of initial profile wetting was greater than the anticipated pasture root depth, (iii) there was a drying period of >3 months duration in the major pasture growth phase to allow pastures to extract soil water to the maximum extent, and (iv) the SWC was measured at a sufficient frequency to determine extraction of soil water by roots. SWC data were available from spring 1997 to spring 2001 for Barraba (45 access tubes, native pasture), Manilla (45 tubes, native pasture) and Nundle (36 tubes, sown pasture). Analyses of monthly rainfall compared with mean values identified 3 times where substantial rainfall was followed by an extended drying period. These periods occurred in 1998, 1999 and 2000. SWC data for the 1998 drying period best met all the preliminary filters, particularly criteria (ii) and (iii). Root depth values estimated from these data using the 4 approaches were not significantly different for Barraba (188 ± 4 to 190 ± 3 cm, n = 45), Nundle (142 ± 5 to 143 ± 7 cm, n = 13) and Manilla Red Chromosol (164 ± 7 to 176 ± 7 cm, n = 14), but were significantly different for Manilla Brown Vertosol (98 ± 7 to 121 ± 7 cm, n = 23). It was concluded that reliable estimates of root depth may be readily obtained for a range of soils and environments by firstly applying the 4 simple criteria used in these studies to the SWC data and by determining the depth of significant drying using t0.05. The depth of significant drying approach was the most objective, providing consistent results among sites and accounting for variance among NMM counts and tubes in these studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call