Abstract

Root colonization and induction of an iron stress regulated promoter for siderophore production by Pseudomonas fluorescens 2-79RLI was studied in vitro and in the rhizosphere of different plant species. P. fluorescens 2-79RLI was previously genetically modified with an iron regulated ice nucleation reporter, which allowed calibration of ice nucleation activity with siderophore production. Initial experiments examined ice nucleation activity and siderophore production under different growth conditions in vitro. These studies demonstrated that P. fluorescens 2-79RLI could utilize both Fe-citrate and Fe-phytosiderophore as iron sources, suggesting that production of these compounds by plants would increase iron availability for P. fluorescens 2-79RLI in the rhizosphere. Fe demand and Fe stress were further shown to be a function of nutrient availability and were reduced when carbon was limiting for growth. Subsequent experiments extended these observations to rhizosphere cells. Cells were sampled from the rhizosphere and the rhizoplane. Results of a soil microcosm experiment showed that Fe stress was reduced for P. fluorescens 2-79RLI in the barley rhizosphere as compared to the cells in the rhizosphere.of lupin. In lupin, relative Fe stress of P. fluorescens 2-79RLI was greater at the root tip than in the lateral root zone. In a second experiment comparing zucchini and bean, iron stress was greater for P. fluorescens 2-79RLI associated with zucchini than with bean. In a third experiment with rape plants under P deficient conditions, addition of soluble P was shown to increase Fe stress for P. fluorescens 2-79RLI located at the root tip, but not in the lateral root zone. This study showed that Fe stress of P. fluorescens 2-79RLI in the rhizosphere may be influenced by plant species, P source, root zone and localization of the cells within the rhizosphere.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.