Abstract

This paper develops a methodology to combine diagnostic information from various fault detection and isolation tools to diagnose the true root cause of an abnormal event in industrial processes. Limited diagnostic information from kernel principal component analysis, other online fault detection and diagnostic tools, and process knowledge were combined through Bayesian belief network. The proposed methodology will enable an operator to diagnose the root cause of the abnormality. Further, some challenges on application of Bayesian network on process fault diagnosis such as network connection determination, estimation of conditional probabilities, and cyclic loop handling were addressed. The proposed methodology was applied to Fluid Catalytic Cracking unit and Tennessee Eastman Chemical Process. In both cases, the proposed approach showed a good capability of diagnosing the root cause of abnormal conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.