Abstract
Wind damage in Japan is mainly caused by typhoons (i.e., tropical cyclones), which are characterized by intensive heavy rainfall and strong winds. In this study, we conducted tree-pulling experiments on two sites to find out whether rapidly supplied water on the soil would affect stability of root anchorage of hinoki (Chamaecyparis obtuse (Sieb. Et Zucc.) Endl.), as expected. For the experiments, we first supplied several quantities of water around the target trees, and then they were pulled down using a wire winch. On study site 1 (Kamiatago experimental forest), we applied general tree-pulling experiments (no water supply) in 2008 and six different irrigation treatments around the target trees in 2009. On study site 2 (Chiyoda experimental forest), we applied one irrigation treatment in 2009. As a result, five trees were uprooted and two were broken in 2008, and all nine trees were uprooted in 2009 on study site 1, regardless of irrigation treatment. On study site 2, two trees pulled down after 4 h of water supply were ruptured at the stem base, opposite to two trees pulled down immediately after supplying water. The water content below the root plate significantly affected root anchorage and more specifically, the maximum turning moment, stem angle at the maximum force, and stiffness index. Moreover, water inside the root plate increased root anchorage at the beginning of a tree failure process. However, it also reduced the root plate area of the hinge side. Conversely, high water content below the root plate decreased root anchorage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.