Abstract

Amino acid concentration in the rhizosphere results from fluxes between plant roots, soil and microorganisms. In this context, root amino acid exudation process, composed of both efflux and influx, remains unclear. One main issue is to understand the selectivity of amino acid exudation resulting mainly in high proportions of glycine and serine in exudates compared to low proportions inside the root. To reach this point, a quantitative analysis of exudation with dissociated measurements of efflux from influx is needed. We measured efflux and influx by supplying 15N-labelled glycine or serine for a short time of exposure at ecologically relevant concentrations to plants of white clover (Trifolium repens L.), perennial ryegrass (Lolium perenne L.), maize (Zea mays L.), oilseed rape (Brassica napus L.), tomato (Lycopersicon esculentum Mill.) and alfalfa (Medicago sativa L.). Efflux was estimated by the increase of 14N content of amino acids in root exudates and influx was estimated by the increase of 15N content in plant tissue. Glycine efflux exceeded influx for all six species and was much higher in Fabaceae than in Poaceae. Serine efflux exceeded influx in alfalfa, white clover and rape. We conclude that presence of glycine and serine in root bathing solutions results from high glycine and serine efflux rates, observed in all six species studied here. The physiological and ecological significances of these high efflux rates are discussed in the context of N metabolism and plant–soil–microorganisms interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.