Abstract
The synthesis of highly divided anatase TiO2 nanoparticles displaying 300 m2 g−1 surface area is achieved by following a two‐step synthetic process at room temperature. The particles exhibit a needle‐like morphology composed of self‐assembled 4 nm nanoparticles. The crystallization process from amorphous TiO2.1.6H2O to oriented aggregation of anatase TiO2 proceeds according to a slow solid dehydration process taking place in a large range of pH in deionized water (1 < pH < 12) or alternatively when including a low amount of NH4F(aq) in solution. Driven by their high surface area enhancing the chemical/electrochemical reactivity, it is reported in the case of the anatase TiO2 that a modification in the lithium insertion mechanism is no longer attributable to a two‐phase reaction between the two‐end members LiεTiO2 and Li0.5±αTiO2 when downsizing the particle size, but instead through a complete solid solution all along the composition range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.