Abstract

Single-photon detectors that can resolve photon number play a key role in advanced quantum information technologies. Despite significant progress in improving conventional photon-counting detectors and developing novel device concepts, single-photon detectors that are capable of distinguishing incident photon number at room temperature are still very limited. We demonstrate a room-temperature photon-number-resolving detector by integrating a field-effect transistor configuration with core/shell-like nanowires. The shell serves as a photosensitive gate, shielding negative back-gated voltage, and leads to a persistent photocurrent. At room temperature, our detector is demonstrated to identify 1, 2, and 3 photon-number states with a confidence of >82%. The detection efficiency is determined to be 23%, and the dark count rate is 1.87 × 10-3 Hz. Importantly, benefiting from the anisotropic nature of 1D nanowires, the detector shows an intrinsic photon-polarization selection, which distinguishes itself from existing intensity single-photon detectors. The unique performance for the single-photon detectors based on single nanowire demonstrates the great potential for future single-photon detection applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.