Abstract

Single photon detection is important for a wide range of low-light applications, including quantum information processing, spectroscopy, and light detection and ranging (LiDAR). A key challenge in these applications has been to integrate single-photon detection capability into photonic circuits for the realization of complex photonic microsystems. Short-wavelength (λ < 1.1 μm) integrated photonics platforms that use silicon (Si) as photodetectors offer the opportunity to achieve single-photon avalanche diodes (SPADs) that operate at or near room temperature. Here, we report the first waveguide-coupled Si SPAD. The device is monolithically integrated in a Si photonic platform and operates in the visible spectrum. The device exhibited a single photon detection efficiency of >6% for wavelengths of 488 and 532 nm with an excess voltage of <20% of the breakdown voltage. The dark count rate was below 100 kHz at room temperature, with the possibility of improving by approximately 35% by reducing the temperature to −5 °C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call