Abstract

AbstractMolecular ionic composites (MICs), made from ionic liquids and a rigid‐rod polymer poly(2,2′‐disulfonyl‐4,4′‐benzidine terephthalamide) (PBDT), are a new type of rigid gel electrolyte that combine fast ion transport with high thermal stability and mechanical strength. In this work, a MIC electrolyte membrane is prepared that is composed of PBDT, lithium bis(trifluoromethylsulfonyl)imide (LiTFSI), and 1‐butyl‐1‐methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (Pyr14TFSI) in a mass ratio of 10:10:80. The ionic conductivity at 25 °C is 0.56 mS cm−1 with no added flammable/volatile components. Although the polymer content is only 10 wt%, this MIC membrane is rigid with a tensile modulus of 410 MPa at room temperature. The MIC membrane remains stable and rigid at 200 °C with the shear storage modulus (G′) only slightly decreasing by 35%. Li/MIC/LiFePO4 cells demonstrate stable cycling performance over a wide temperature range from 23 to 150 °C. The specific discharge capacity at 100 and 150 °C at 1 C rate exceeds 160 mAh g−1. The discharge capacity retention is 99% after 50 cycles at 150 °C. This stable battery performance shows that this low polymer content MIC membrane qualifies for use as a solid electrolyte in lithium metal batteries operating over a wide temperature range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.